2016 NECO Mathematics Expo Answers | Objectives and Essay Solution Runz
VERIFIED NECO 2016 MATHEMATICS QUESTIONS AND ANSWERS
Wednesday 22nd June.
Paper III: Objective - General Mathematics 10:00am - 11:45am
Paper II: Essay - General Mathematics 12:00noon - 2:30pm1-10 deacdacbbe
11-20 cbaeebdacc
21-30 deedacbbce
31-40 abdcebaeec
41-50 caadedbaea
51-60 edeacbacdd
1a)
Tabulate
x- 1,2,3,4
1- 1,2,3,4
2- 2_, 4, 0_ ,2_
3- 3, 0_, 3, 0_
4- 4_, 2_, 0_, 4
1b)
I = PRT/100,
p=N15000
R=10% and I=3years
A = P I where I = 15000*10*3/100=N4500
A=4500 15000 =N19500
2a)
using sine rule
b/sin20 = 6/sin30
bsin30 = 6sin120
b 6sin120/sin30
b = 6x0.2511/0.4540
b = 5.7063/0.4540
b = 12.57 ≠ 12.6cm
2bi)
the diagram is euivalent triangles.
where
|AX|/|BC| = |BY|/|AC| = |XY|/|YC|
XY = 9, BY = 7
YC = 18-7=11
9/11 = 7/|AC|
9|AC| = 77
|AC| = 77/9
|AC| = 8cm
2bii)
XY/AB = BY/AC
9/|AB| = 7/8.6
|AB| = 9x8.6/7
|AB| = 11cm
3)
let the son age be x
man=5x
son=x
4yrs ago;the man age = 5x - 4
the son age = x - 4
the product of their ages
(5x - 4)(x - 4) =448
4a)
volume of fuel = cross-sectional area of X depth of fuel rectangular tank
30,000litres = 7.5*4.2*d m^3
but; 1000litres =1m^3
therefore;30(M^3) = 7.5*4.2*d(M^3)
30=31.5d
====> d = 30/31.5 = 0.95(2d.p)
4b)
to fill the tank/volume of fuel needed = 7.5*4.2*1.2 = 37.8m^3 = 37,800
litres addition fuel = 37,800-30,000 = 7,800
litres therefore, 7,800
more litres would be needed
================
5a)
sector for building project =48000/144000*360 =120degree
sector for education = 32,000/144000*360=80degree
sector for saving = 19200/144000*360=48degree
sector for maintenance = 12000/144000*360=
30degree
sector for miscellaneous = 7200/144000*360=18degree
sector for food items = 360- (120 80 48 30 18) =360-296 =64degree
5b)
amount spent=144000- [48,000 32000 19200 12000 7200] =144000-118400 =N25600
===============
7a)
3²ⁿ ¹ — 4(3ⁿ ¹) 9 = 0
3²ⁿ × 3 — 4(3ⁿ× 3¹) 9 = 0
(3ⁿ)² × 3 — 4(30ⁿ× ) 9 = 0
Let 3ⁿ= x
3x² — 4 × 3 × x 9 = 0
3x² — 12x 9 = 0
Divide all by 3
3x²/3 — 12x/3 9/3 = 0
x² — 4x 3 = 0
x² — 3x — x 3 = 0
x(x—3) -1(x—3) = 0
(x—3)(x—3) = 0
x—3 = 0 or x—1 = 0
x = 3, x = 1
Substitute x = 3
3ⁿ = 3 or 3ⁿ = 1
3ⁿ = 3¹ or 3ⁿ= 3°
n = 1 or n= 0
7b)
log(x^2 4) = 2 logx - log^20
log(x^2 4) = log^100 = log^x - log^20
(x^2 4) = log(xx)
x^2 4 = 5x
x^2-5x 4 = 0
x^2-4x - x 4 = 0
x(x-4) - 1(x-4) = 0
(x-1)(x-4) = 0
x-1 = 0 or x-4 = 0
x = 1 or 4
8)
|BC|² = |BD| + |CD|²
13² = BD² + 5²
169 = BD² + 25
√BD² = √144
BD= 12m
Both OB = OD and OB + OD
= 2OB/2 = 12cm/2
OB = 6cm
8b) Circumference = 2πr
r = 6cm, π = 22/7
= 22 × 2 × 6/7cm
= 264/7cm
= 37.7cm to 1 decimal places
=================
9a) Let the digits be y
10(5 + y)+y =3y(5 +y) —14
50 + 10y + y = 3y(5+y) —14
50 + 11y = 15y + 3y² — 14
3y² + 15y — 11y — 50 — 14 = 0
3y² + 4y — 64 = 0
(3y² — 12y) + (16y — 64) = 0
3y(y — 4)(3y + 16) = 0
y —4 = 0 or 3y + 16 = 0
y = 4 or —16/3
9b)
3—2x/4 + 2x—3"3
= 3(3—2x) + 4(2x—3)/12
= 9—6x + 8x—12/12
= 2x—3/12
10a)
y=(2x^2 + 3)^5
let U=2x^2 + 3
Y=u^5
du/dx = 4x
dy/du = 5u^4
dy/du = (2x^2 + 3)^4
dy/dx = du/dx dy/du
dy/dx = 4x.5(2x^2 + 3)^4
dy/dx = 20x(2x^2 + 3)^4
10b)
y=3x^2 + 2x +5
dy/dx =6x + 2
dy/dx =6(3) +2
dy/dx =18+2
dy/dx =20
10c)
R-W=Wv^2/gx
Wv^2=gx(R-W)
Wv^2=gRx-Wgx
Wv^2+Wgx=gRx
W(v^2 + gx) =gRx
W=gRx/V^2 + gx
R=2, g=10, x=3/2, V=3
W= 10*2*3/2/3^2 + 10*3/5
W=30/9+15
W=30/24
W=5/4
8)
|BC|² = |BD| + |CD|²
13² = BD² + 5²
169 = BD² + 25
√BD² = √144
BD= 12m
Both OB = OD and OB + OD
= 2OB/2 = 12cm/2
OB = 6cm
8b) Circumference = 2πr
r = 6cm, π = 22/7
= 22 × 2 × 6/7cm
= 264/7cm
= 37.7cm to 1 decimal places
=================
9a) Let the digits be y
10(5 + y)+y =3y(5 +y) —14
50 + 10y + y = 3y(5+y) —14
50 + 11y = 15y + 3y² — 14
3y² + 15y — 11y — 50 — 14 = 0
3y² + 4y — 64 = 0
(3y² — 12y) + (16y — 64) = 0
3y(y — 4)(3y + 16) = 0
y —4 = 0 or 3y + 16 = 0
y = 4 or —16/3
9b)
3—2x/4 + 2x—3"3
= 3(3—2x) + 4(2x—3)/12
= 9—6x + 8x—12/12
= 2x—3/12
10a)
y=(2x^2 + 3)^5
let U=2x^2 + 3
Y=u^5
du/dx = 4x
dy/du = 5u^4
dy/du = (2x^2 + 3)^4
dy/dx = du/dx dy/du
dy/dx = 4x.5(2x^2 + 3)^4
dy/dx = 20x(2x^2 + 3)^4
10b)
y=3x^2 + 2x +5
dy/dx =6x + 2
dy/dx =6(3) +2
dy/dx =18+2
dy/dx =20
10c)
R-W=Wv^2/gx
Wv^2=gx(R-W)
Wv^2=gRx-Wgx
Wv^2+Wgx=gRx
W(v^2 + gx) =gRx
W=gRx/V^2 + gx
R=2, g=10, x=3/2, V=3
W= 10*2*3/2/3^2 + 10*3/5
W=30/9+15
W=30/24
W=5/4
0 Comments
After dropping your comment, keep calm, it may take minutes before it appears after moderation.
Your comment(s) are appreciated.
You want to get notified when we reply your comment? Kindly tick the Notify Me box..